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FOREWORD

This report was prepared by North American Aviation, Inc., Space
Division, under NASA Contract NAS9-4552, for the National Aeronautics and
Space Administration, Manned Space Flight Center, Houston, Texas,with
Dr. F.C. Hung, Program Manager and Mr. P.P. Radkowski, Assistant
Program Manager. This work was administered under the direction of
Structural Mechanics Division, MSC, Houston, Texas with Dr. F. Stebbins
as the technical monitor.

This report is presented in eleven volumes for convenience in handling
and distribution. All volumes are unclassified,

The objective of the study was to develop methods and Fortran IV
computer programs to determine by the techniques described below, the
hydro-elastic response of representation of the structure of the Apollo Com-
mand Module immediately following impact on the water. The development
of theory, methods and computer programs is presented as Task I Hydro-
dynamic Pressures, Task II Structural Response and Task III Hydroelastic
Response Analysis,

Under Task I - Computing program to extend flexible sphere using the
Spencer and Shiffman approach has been developed. Analytical formulation
by Dr, Li using nonlinear hydrodynamic theory on structural portion is
formulated. In order to cover a wide range of impact conditions, future
extensions are necessary in the following items:

a. Using linear hydrodynamic theory to include horizontal velocity
and rotation.,

b. Nonlinear hydrodynamic theory to develop computing program on
spherical portion and to develop nonlinear theory on toroidal and
conic sections,

Under Task II - Computing program and User's Manual were developed
for nonsymmetrical loading on unsymmetrical elastic shells. To fully
develop the theory and methods to cover realistic Apollo configuration the
following extensions are recommended:

a. Modes of vibration and modal analysis,

b, Extension to nonsymmetric short time impulses.

- ii1 -



c. Linear buckling and elasto-plastic analysis

These technical extensions will not only be useful for Apollo and
future Apollo growth configurations, but they will also be of value to other
aeronautical and spacecraft programs.

The hydroelastic response of the flexible shell is obtained by the
numerical solution of the combined hydrodynamic and shell equations. The
results obtained herein are compared numerically with those derived by
neglecting the interaction and applying rigid body pressures to the same
elastic shell, The numerical results show that for an axially symmetric
impact of the particular shell studied, the interaction between the shell and
the fluid produces appreciable differences in the overall acceleration of the
center of gravity of the shell, and in the distribution of the pressures and
responses. However the maximum responses are within 15% of those pro-
duced when the interaction between the fluid and the shell is neglected. A
brief summary of results is shown in the abstracts of individual volumes.

The volume number and authors are listed on the following page.

The contractor's designation for this report is SID 67-498.
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ABSTRACT

A general numerical procedure is presented for
determining the static and dynamic response of shells
of revolutions with arbitrary distributions of stiffness
subjected to arbitrary loads and temperatures. These
formulations are based on Sander's linear first order
shell theory which was modified to include the effect of
transverse shear distortion. The method consists of
a Fourier analysis to separate the circumferential
variation in the governing equations. This results in
equations with the coefficients coupled in the Fourier
index. The matrix form of this equation is reduced
to an algebraic form by finite difference. The unknown
Fourier components of the solution are obtained by a
matrix elimination procedure of this form of the
governing equations,

The numerical analysis is mechanized for solution
on the digital computer. Numerical examples and
comparisons are presented.

The procedure is general and yields accurate solu-

tions for complicated structural response for both
static and dynamic conditions.
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1.0 ANALYSIS

1.1 INTRODUCTION

A general numerical procedure is presented for determining the
response of shells of revolutions with arbitrary distributions of stiffness
subjected to arbitrary loads and temperatures. The dynamic response
problem will be presented and the specialization for the static analysis will
be made.

The analysis is based on a modified form of the general first order
linear shell theory of Sanders. These equations have been modified to
include transverse shear distortion, see Appendix 1-1. The modified
equilibrium equations are extended to include time dependence by D'Alembert's
principle. Fourier analysis is used to separate variables in the circum-
ferential direction and a system of finite difference approximations are used
to reduce the partial differential equations to an algebraic set. This set is
solved by using a direct matrix elimination procedure.

The material presented is an extension of the work by Sanders,
Budiansky and Radkowski, and Johnson and Greif - Ref 1, 2, 3. The notation
used is identical to that of Ref. 2 except where noted.

1.2 LIMITATIONS

The shell theory on which these programs are based is restricted to
linear, elastic, thin shell theory.

1. The thickness of the shell at any point is small compared to the
other dimensions.

2. Deformations of the shell are small compared to the dimensions
of the shell,

3. All material points of the shell deform elastically, obeying
Hooke's law for ortholropic materials.

4. The shell is '""complete'’, i.e., its only boundaries are at
meridian ends and inner and outer surfaces.



5. The class of shells considered was a surface of revolution
reference surface which is within or in close proximity of the .
shell walls,

6. The parameters of stiffness, e.g., in-plane stiffnesses are
permitted to vary in both the meridional and circumferential
directions. Implied is that parameters such as thickness, Young's
modulus, etc., are permitted to vary in both the meridional and
circumferential directions.

7. Arbitrary loads and temperature distributions are permissible.
8. The effects of transverse shear is included.
9. Instability is not considered.

10, Arbitrary distribution of mass, elastic foundation and external
damping is included.

1.3 SHELL COORDINATE SYSTEM

The class of shells considered must have a surface of revolution
reference surface lying within or in close proximity of the shell walls.
Material points of the shell are then described by an orthogonal coordinate
system (s, 6,( ) based on this reference. The meridional distance (s) is a
mreasure from a boundary along the reference surface. The circumiferential
angle (g) is a measure from some convenient reference and the normal
measure (L) is the distance from the reference surface measured along the
outward normal to the reference surface.

The geometry of the reference surface is given by r(s), when r is the
distance from the axis, the principal radii of curvature are

-1/2

<o (%]

. 5 -1/2 dzr

R = - 1 —-—r — 1-2
s ds 2
ds

Introduce the nondimensional meridional coordinate § = s/a, where a is
a reference length; then, with P = r/a, the nondimensional curvatures
wg T a/Rg and wg a./Re can be found from the formulas




[i—(p')z}l/z/P 1-3

we =
wg = = (! + v2) / wg 1-4
where
Rg= OyF Y = p'/p 1-5
R9= OZP
In these equations, and henceforth, { ) a( )
o]
Finally from the Codazzi relation we obtain
w‘e:Y(wg-we) ].—'6
and the relation
1R}
Pl = 1-7

p— = -wgwe
1.4 EQUATIONS OF MOTION

The general equilibrium equations for an arbitrary shell based on the
first-order linear shell theory of Sanders are given in Ref. 1. These equa-
tions are modified to include theveffect of transverse shear distortion by the
procedure suggested by Sanders. These equilibrium equations are ecxtended
to equations of motion by use of D'Alembert's principle. These equations
specialized for a shell whose reference surface is a surface of revolution are
given as,

9P ON aN 9P
p 9N 9N ¢g _ 9Py
a[ 8@Nf;+ 6§g+ 3 £ 5 8} +apw§Qé
oM
wg -wg ) —— £8
+o1/2 (wg 9)&)0€ ta” pag
)
2 8°U _ oUg
=a"p | M e L A 1-9. 1
2 3 ;
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2
s Ug oU
2, | 7
tapq, = ap —5 1 g +!/18Ue 1-9,2
at at
0 69, 8Q, )
— + = - w, Ng + N+ a
258 % 5t tam Pl NgtwgNgliraea
2 %W oW
= r— n, =+ 1-9.3
2 —2 v Ty e Y W K
ot
apM oM oM op

2
9 QF, % aég £
= ap| p > +7n +¢g¢ 1-9,4
ot £ at
aM aM
6 2
_—+_§£M§6 +p —aer
36 8¢
82¢6 \ aée e
I Y’ g 3t Ve %e 1-9.5

Where the components of membrane force, transverse force and
moment (about the reference surface) per unit length, and load per unit area
(assumed to be applied at the reference surface) are shown in Figures 1. 2.




Figure 1-1, Displacements, Membrane Forces, Transverse

S

Figure 1-2, Moments, Loads, Rotations

In the Sanders' first-order theory the inplane shearing forces Nge and
Ng¢ as well as twisting moments M¢p and Mg, are not handled separately,
but'instead are combined to form modified variables

Nge =1/2 (Neg + Neé )

ﬁge =1/2 (Mg + M ) 1-10

8¢
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and

kpg = 1/2 (keg + kgg )

It is necessary when including the effects of transverse shear distortion
to consider five equilibrium equations. Recall in Ref. 1 that when shear
deformation is neglected the shear forces are eliminated and resulting equili-
brium equations are reduced to the consideration of three equations. The
neglecting of transverse shear strains implies that normals to middle sur-
face of the shell remain normal after deformation. The degree of error
introduced by this assumption naturally depends on the magnitude of trans-
verse shearing forces and shear rigidity of the shell, For discontinuous
loads and shells having low shear rigidity (sandwich shells), shear deform-
ations may be comparable to bending and axial deformations and cannot be
ignored.

It is necessary when including the effects of transverse shear distor-
tion to consider five equilibrium equations rather than the reduced set of
three equations (see Ref., 1) that can be used when shear deformation is
neglected.

It should be noted that for shells which do not possess a common ref-
erence surface of revolution the more general form of Sanders equations for
an arbitrary shell must be utilized.

1,5 FORMULATION INTO SOLUTION VARIABLES

The equations of motion are now expressed in terms of the solution
variables, displacements and rotations.

The force and moment expressions in the equations of motion are
determined by evaluating the following integrals through the thickness.

Ng = [og 4 Mg = fegta
N, = [ o, dt M, = tdy
° ]“e ° [69 1-11
Ngo = [Tgodl Mgg= [ Tee b4%
Qg =ng§ dy Qe = /Tegdg




where in the above integrals we have neglected terms of order {/R , R is the
minimum radius of curvature. The stresses used above are defined as:

T s O, are normal stresses, acting on the faces

Tée is an inplane shear stress acting parallel to the reference
surface

Tgé , Teé are transverse shear stresses acting normal to the reference
surface

By assuming that plane sections before remain plane after deformation the
strains at a distance { from the reference surface can be expressed in terms
of the reference surface strains as follows:

€glb) = < + éKg
€g(l) = ¢g + LKy 1-12
“egll) = ‘tg T éng

where e¢, ¢g and €tg are the strain of the reference surface and ¢ ge(é) is

one-half the usual engineering strain.

The stress-strain-temperature relations for an orthotropic material

are
Eg
oy = T Vgeveg) {eg + V9§€9+Z;(K§+ VG&,K ) - (O’gw’ vegae)T}
Eg
0'6: (T:V—ge——;e—g) { €6+ Vée Eg'{’é(Ke‘T” L'ge Kg) - (Oe+ \’gea’g)T}

Tgez G(ege +égk§0)

T

T§§:G Y ¢ 1-13



From a consideration of orthotropic materials an identity v tgE
= VQFEgWill be utilized. (See expressions for B3, C3 and D3 Eq 1-15,)

Substituting these equations into Eqs. 1-

11 employing appropriate

integrations through the thickness yield the following stress/resultants-

strain relationships.

_ T
No=B,¢ +B, ¢ +Ck, + Ck, - N+
8 T3¢t T2 T3¢ 276 6

Qe=G, Ve

M,=C,e,+C,¢ +DKk, +D.k. -M?r
3 1°¢ 36 T1¢ 3°6 3
Mg=C,¢,+C,e.+D.k,+Dk -M-
6 36 Y26 T3 g 2@ 6

Meg = Gracee™ Giske g

1-14

where in the above equations the shell stiffnesses are given by

E d¢
_ g
Bl‘fl
(1= vegvge)

Egd ¢
2~ J(T- vge_veg)

E, tdt
c - 3
! /“"’ée"eé’
. . Eeédé
2" JTggvep




) fv§eEd ) v geEpdl . _f Eéézd{;
P37 T vieven (T=vggvge) 1 Tovggrg e

2
. vgeEeédé :fvegEgédé o / Eeé dg
3 (1 TVEQ Veg) (1 ‘Vée veg) 2 (~ - Vée"gg)

2
ve  E L73L édé
D:_/gee _fegg G, = [ara
3 (1 -vEg Veé (1 ‘Vée‘reg) 12

= Jaat g, = ngdé G, = [Ggat G, = [ at?at 1

and thermal loads are

(ag +vggq) E,TdL

N. 2

(1 -vegvee)

f(ae+ Ve @ g ) E Tdé
(1 -vVegY 9§

+ Veg e gT(_adz;

]. -Vge eg)

(1-Vgeveg) 1-16




In evaluating the stiffness quantities, the reference surface is chosen
at a convenient location within the shell wall. It is not possible to simplify
these expressions for the general case of shells having varying meridional
and circumferential stiffness properties. (For shells of revolution, it was
possible (see Ref, 2) to select a convenient location for reference such that
C, Gjj stiffness quantities described above vanished.

-

For the case of multilayer shells the integration is taken layer piece-
wise through the thickness because of the discontinuities caused by different
properties of such layer. The shell stiffness and thermal loads take the

form,
h,
A= [F)dg =z'/‘ JFj(gj)dgj
"Jo. 1-17
j

layer

—/
reference
surface

Figure 1-3, Multilayer Configuration
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The reference surface strains may be defined in terms of displacements
and rotations by the following expressions. The membrane strains of the
reference surface are given by

1 1 6U€ uUg
€ = — ) _— -YU
te [ o 6
2a | P 36 RS 1-18

where U, V, W are displacements in the &, ¢ and { directions respectively.
Transverse shear strains are given by

where <I>§ , cpe are rotations.

The bending distortion terms are given by

-11 -



Substituting equations 1-18, 1-19, 1-20) into equation 1-14 the force
terms in the equations of motion can be expressed in terms of the
displacements

N‘lBaUg+BYU+Bl + (B wg + Bé )W
£ a | 1og ET "3 p ae 3 3
0®E 1 odg T
9= & — =01
+Cy FEt Cy Yo+ Gy e} N,
-1lg %% 1 9Up
Ne E B3a- +B2YU§+BZ?89+(B3 §+B we)W
ot 1 9%g T
Neo ™ 2a p[G1+G122 ( é""e):I,T*[Gl G222 ¢ “’e)] 5t
1 ad ad>9
.__5_§ °0%¢ _ Yo
[G1+G122 (v w9):|U‘3+Glzp 6 C1273; " 12 e}
1 1 oW
- .= 1w . s
Qg G WgUg‘i‘ g+ g]
1 'dUg laUe
-2 il w
Mg a cldg+CYU§+C ae+(C1wg+C e)w

_.S 1 a¢%e|_
+ D, g+D3Y°€+D3P T

-12 -




1 aUe
27 50 (Czwgt Cyue) W

mgal

. ad
{C3 £+ CZYU§+ C

T
_Me

30 1
+ Dy -§+D ve, + D, 5 28

_ 11 (1) 58U 1 2U6
Meo = Zal p [Glz * G135 \z7a (wﬁ'we)] 36 [Glz ~C132a ¢ "*’e)] 5,
1 1 5dE o®g '
- —_— - { L 2= —— -
Y [G12+G13 2a (¢ “6)}J6+G13p 36 “1375, ~ “137%0
1 1 aw
g i v 4 LW
Q¢ Gs{ 2“6 T Tp 89+¢9] 1-21

By employing the relations of Eq. 1-21, the equation of motion can
be expressed in terms of the dependent variables, displacements and rotations.
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2.0 NUMERICAL ANALYSIS

2.1 FOURIER EXPANSIONS

The analysis utilized is a Fourier approach which will permit separation
of variables and yield a more tractable set of shell equations. The procedure
involves expanding of the pertinent variables in Fourier series with appro-
priate normalization to provide nondimensional Fourier coefficients of roughly
comparable magnitudes for different variables. Letting o5, E,, hy be a
reference stress level, Young's modulus, and thickness respectively, solu-
tions for the field equations are sought in the form

a(ro @
U§: = z u (£, t) cos nb
0 h=0
a(ro @
= t) si e
Ug B 2 v (&,t) sinn
O n=1
ao ©
W = Eoz w (£, t) cos nb
O n=0
o (o0
S n=0
o o o]
g =2 z by (£, ) sinn® (2-1)
O nh-l
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These Fourier expansions are consistent with loadings of the form

qg = = = pgn (£,t) cos n6
o o .
= , t) sinné
dq = £, Pon (€, t)
= 0 2-2
9 = &, Pu (£, t) cosn (2-2)

The above Fourier expansions are not the most general form that can
exist. The expansions q ,ql ~are symmetrical expansions about 8 = 0. For
full generality, they must bée augmented by additional sine series expansions.
The form qgin turn would be supplemented by cosine series. Similarily, a
convenient set of sine expansions must hold for displacements and rotations,
For ease of presentation the condensed form of expansions (Eqgs. 2-1, 2-2)
will be used. The contribution of augmented terms in the series expansion
will be described later.

Expansions for the temperature distributions may be described in a
similar manner; however, since the thermal coefficients and Young's modulus
can vary in the circumferential direction, it will be more convenient to expand
the thermal load in Fourier series as follows

™

R h T 3]
NZ = Cro ° tgn cos n

T S
N = oh Zt cos nB
6
n=0

o
O

3
T hy & 1
I\/Ig = z M cos nb
a 0 En

-16 -




(rh3
0 o
a

©
Mg = ZO mgn cos n6 (2-3)

n

. T T T T
Where the Fourier components tgn s ton o Mgy and my, are

given by

T
NT
tT :—2— § cos nb d6
gn ™ O'h 1
o o
o)
™ T
T 2 Ne
t - — cos n6de
6n cdh -~
o o
o
naMg
T
m :E ———l cos n6 dé
n ¢ h
o o o

™
T 2 aMg
men =— ~h3 cos n6de (2-4)
A 0o o '

Since the stiffness parameters are variable in the circumferential
dircctions these will also be expanded in a Fourier series. For example,
the expansion for the extensional stiffness parameter is of the form

[o2] a0}
B:Zb. cosj6+z b, sin j® (2-5)
[EV I =1 ) '
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In the Apollo heat shield shell, there exists a plane of symmetry with r
respect to planform geometry. See Fig. (2-1).

r= =" il *:
"..__J 18, :,____,' .
-——- 18, :._.__...
1By’ - —_———
- ¢ 2m b

Figure 2-1, Stiffness Profile

A plane of symmetry will be also assumed in this study. In sucha
case the sine terms in Eq. 2-5 are dropped and the coefficients of B viz.
bj are found by integrations of the form

b =2
™

J f" B (£,6) cos j6d6 (2-6)
[o]

-18 -




[N
In order to determine the accuracy of the Fourier series representation
of the Apollo heat shield configuration several numerical examples were run.
The results of the comparison can be seen in Fig. 2-2 where extensional
rigidity versus circumferential coordinate is plotted for four trial cases
using 10, 15, 20 and 30 Fourier components of solution.
THETA PLOT FOR STATION 30
NP = 10,0 (), W) = 18,0 (0), NCF) = 20,0 (X), N(F) = 30.0 (%)
s3.ex18'%¢
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2.ox10°0% T T
—— 0 —~4 -4
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T I
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i
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The Fourier expansions of the shell stiffness parameters (Eq. 1—'15),
consistent with previous formulation are given by

o] (o]
= 3 - h .
B_=Eh > b_ (£ cosjo, G =Eh > g (&) cosjo
j=0 ] j=0

@
2
¢ =2n° N ¢
m 00_4_4

. 2 & .
- (§) cos je, G12 3 tho z glzj(g) cos j@
_]:0 J J:O

[se)

3 . '
g)5;(8) cos jB (2-7)
=0

o}

[s¢]
3 . _
D =@ tho 2 dm'(g) cos j0, G13 = th
j=0 ) ]

Substitution of the displacement (rotation) series expansions (Egs. 2-1)
and the above stiffness expansions into Eqgs.(1-21) and employing the proper
trigonometric identities yields the following series expressions rclating
forces (moments) in terms of the Fourier coefficients of the displacement
variables and stiffness parameters:

© @© . auj .
E nj kj n
= E B - —- . )
NF, Uoho 2 ‘ ) + wgwj + B3 (Yuj + 5 V_] + wewJ)
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n=1 j=0 g
nj
© (G oo
12 [ n 6j
+—xjg {-—— <-¢ Lt == -Yb
2 P o] 6
fr €] ¢ ]
1 n ov )
j .
+_Z—(w€, —we) (-E J"a_g-YVj sin n 6
M © nj BwJ
= 0 - + — 4+ 0
Qg oho 2 Z [ GZ <w§ nJ ag ¢§J> cos n
n=0 j=0
h3 @ 3
a @ . n. .
e 1 nJ( j ) nj (
= — C — + . ]+ C
e O R AR
n=0 J;O
N % g
- nj
——= +D Y + —
Z[ e ( Pei "% %;

- 21 -~

)

)

Yn. +£v-+ Wa W,
P J



- 22 -




.-
[l

o) @ .
= o h z Z I\/[nJ V.| sinnb
0o o 2 ]

n=0 J:O
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where

h
A= 2
a

The stiffness recursion relationships above are described in the form

AP :% [a(nﬂ) + {1 = 5%(j-n) + 6(n)j| a 1“'”]

An :% {-a(nﬂ) ¥ {1 - 6%(j-n) + 6 (n)]aln'jl] (2-97)

where the specific coefficients of interest (dropping nj superscript) are

given by

A=B,B,B,C,C,C,D,D, D, G, m, iy M. N, ¥, U

A= G Gy Gy Grgs By Mg L s Y

o
|

By Byr By Byye Voo Mg e Msr M0 s

(:‘:S(zc Appendix 1.2 (multiplication of series expressions) for a more detailed
description of A™ and AM))
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In the above expressions the symbolic function & (m) is defined as

-1 m<O
5 (m) = 0 m=0 (2-10)

+1 m >0

2.1.1 Reduced Equations

Substitution of the stress resultant expressions (Eqs. 2.8) into the
Equations of Motion (Eqs. 1-9) yields five finite series expressions in the
circumferential coordinate relating the Fourier coefficients uj, vj, Wj,d?gj,
and ¢6j of the displacement and rotation variables, For practical considera-
tions we truncate the series solution of the dependent variables to K terms
in the Fourier component. Employing the appropriate orthogonality relation-
ships of Fourier series to these equilibrium expressions yields a system
of 5K ordinary differential equations relating the 5K unknown Fourier
coefficients. These equations are presented in a form amenable for computer
programming and are given as follows:

K-1 " T "
Z f . u, + f . Viovs . W,
Ly | BRAL S DT T 5Kk, 5542) 5 5kt 1, 55+3) "]
J:

é

" 1]
T ke, 5k+4) Pei T Ikt 1, 5145 %5 TEGB KR+, 55+ 1) Y

et 81,5545 05 TR+l 5541) 5 T Pk, 5j+5)¢6j:|

k

=Pt % k1, 55+ Y5 P 5rel, 554 )Y
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K- 1
+f ceet f
JZO fisrez, 5i+1) %5 T Tskez, sje2)Vy T

L . d)ll
(5k+2, 5j+5) 0;

1

+ .. +
E5k+2, 5j+1) B(5ut2, 55+5)P6j T P(5k+2, 5i+1) %
§ ko - .
+ . . . = . : . .
Fhisiaz, 5545) %0 Pot %skez, 53+2)Vi T Pskez, 5i42) Y

" 1

K-1
"
£ ...+ o . .
z Eskes, si+1) %5t Hske3, 5i42) Y (5k+3, 5J+5)¢9J
j=0

T 85143, 5j+1) 5

!

+ .

-+h . . =pk+a . w.+B
(5kt2, 5j+5) " 6] 3 (5k+3, 5j+3) j

ul

1 . . 11a + . !
i T f5ka, 5i+5) Pgj | B(5k+4,5j+1)

fiskta, 5541) "

SR
oDAT

1
! + B(skea, 545) P o5 T Bskra, 5541 N5 T
t h ¢ = pk + o b, + B . b, .
(5kt4, 5j+5) ' 6j 4 (5k+4, 5j+4) & (5k+4, 5j+4) "Ej

-27 -

© T 8skas 5541) ®oy T Bskes, 5541) Y

(5k+3, 5j+3) " ;



1

K
+
J

f , R _ + '
2;) (5k+5, 5j+1) % (5k+5, 5545) P03 T B(sk+s, 5j+1) U

P Bl5pys, 5j+5) ¢€ﬁ ¥ h(5k+5, 5j+1) oo

k

oo thigs 5j+5)¢ej] = P5 = Yskes, 5545 %5 T P(skes, 5545) Pej

(k=0,1,2, . ... .K-1) (2-11)

where the f, g, h and p coefficients are described in Appendix 1-3. (It should
be noted that the form of the above equations is more complicated than was
obtained in Ref. (2) for analysis of shells of revolution. This complexity
arises from the fact that the equilibrium equations cannot be decoupled for
each Fourier component of displacement variables for the case of unsym-
metric shell,)

The above equation can be conveniently written in matrix form as
follows:

Fz+Gz+ (H+K)z= @z+Bz+p (2-12)

where F, G, H, (5K x 5K) and z, p, (5K x 1) are defined as follows

- . ) .
f1 f12 €11 852
f21 €21
F = ! G = '
| I
I l
T ! :
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The elements of the F, G and H matrices are given in Appendix 1.2 and
are presented there in a format which is designed to ease computer program-
ming. The coefficients of P are the Fourier components of the applied
external load and are known quantities for a specific loading case,

The analysis developed assumed that the loads q¢, q,were symmetrical

and qg antisymmetric about o = o (egs. 2-2). For combplete generality,
these expansions should be augmented by the following:

q = P, (§,t) Sin ne
(€£,6,1) 2
: nz:l :

Ug,0,t) = O Donlbst) Cosmo
n=0

qg(g,e,t) - zl 13;(€,t) Sin ne@ (2-13)
n=

The more general case of shells having arbitrary distribution of
stiffness, distribution of loads damping, and elastic foundation cannot be
uncoupled in the same manner as the case of plane of symmetry of stiff-
ness and arbitrary loads. In this case the total Fourier series representa-
tion of all the variables, displacements, rotations, stiffness and loads, must
be carried in the analysis. The analysis will follow the same format of the
special case formulated previously.

For consistency, the dependent variables must similarly be
modified. For the case of shells having a plane of symmetry in stiffness,
the analysis would proceed in a similar manner as that previously described.
Now the solution represents Fourier coefficients for the augmented series
expansions, The coefficients of Eqs. 2—11 are similar except for an
appropriate change in sign in some of the coefficients. This complete set
of coefficients will be presented at a later date. The solutions obtained can
be superimposed for the case of a general loading condition.

The more general case of shells having arbitrary distribution of

stiffness, distribution of loads, damping and elastic foundation cannot be
uncoupled in the same manner as the case of plane of symmetry of stiffness
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and arbitrary loads. In this case the total Fourier series representation
of all the variables, displacements, rotations, stiffness and loads, must
be carried in the analysis. The analysis will follow the same format of the
special case formulated previously.

2.1.2 Boundary Conditions

Consistent with Sander's equilibrium equations, the boundary conditions
for the specification of the forces or displacements, or constraint between
them are described below. On the edge where § = constant (i.e., § = 0
and £ = s)

Ng or Ug

A
N§6 or UG

Mge or cbe (2—-14)

where

l ES
£6 = Née + a (we—wé) Mge

Z>

These conditions can be expressed in matrix form by,

Qy+AzZ=£ (2-15)

where y, £ 7 arc column matrices and 2, A are appropriate diagonal

matrices
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Ne T e
Neg Us
?’ = Qg z = w
| Mo | | %6 ]
o o
“2 M £
?2- = X = —:
w3 )\3 i g3
o “a °o N Uy
L 5 | i " i LQ5

The logic which connects Q,A, ! and the conditions desired are
given in the following table:

Matrix
Elements

Conditions at Boundary w; wj w;

C1 = value of displacement
Displacement Specified 0 1 Cl

C2 = value of force
Force Specified ! 0 CZ C3 = constant relating force

and displacement

Constraint Conditions 1 C3 0

For example, if ®¢is given as a boundary condition then A4 =1
wgq = 0and l4 is the prescribed value of ®¢. Note C; is nondimensionalized
with the appropriate reference constants,
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It will be convenient to expand forces and moments in Fourier series
in manner consistent with the previous developments. Letting

Ng :Ztg cos ng
Neg :ztge sin ng
Q¢ :qu cos ng
Mg Zng cos ng

KA&G :zrnrgle sin n@ (2-16)

and

n
Ql —221 cos nB

22 :zﬂg sin nb
t7 cos ne
= n
3 zl 3
2, =) 0"
i 4 cos nB
n .
e :2“5 sin nd (2-17)
The above series expressions together with Eqgs. (2—1) are substituted

into Eq. (2—15) and can be uncoupled for each Fourier coefficient yielding
the following matrix form

Qy + Az =4
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where

ti !

Yl ¢ z1 u

$ :

i ' i

Y3 q& . W

_ = _ s

y = Y4 Yi = £ z = z, = ¢§

i i

Vs Meg e
Q A - Qi
) = £ ]
0 A 0 .
- 21
22 2
Q= A = {2 = ‘E‘ =] 1
i 23
0 0 :
24
— ¢ . — i
. A ZK 25

It will be desirable to express boundary conditions in terms of the
substitution of Eqs. (2-16) in Eq. (2-8) with appropriate orthogonality
operations yields a set of recursion expressions relating Fourier coefficients
of forces and moments to the displacement and stiffness coefficients. These
relationships are given by

K-1

tk = z L+ + v

€~ Tiskal, 55+1) %5 T T(sk+1, 55+4) Pej' O S(sk+1, 5j+1) ]
j=0 |

+
S(5ktl, 55+2) Vi T S(5kt1, 55+5) V5 T S(5k+1, 55+4) ¥¢j
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+
S(5k+1, 5j+5) %j] T a5

K-1

/Ek = Z r v, +r ' +

£o (5k+2,5j+2) 'j  (5k+2,5j45) ' °95k+2, 5j+1)
j=0

¥ . ¥ "
55142, 55+2) V5 T S(5k42, 5544) Toj T S(5ks2, 5545) ¢ j]

1

1t

K-
/
+
z [r(5k+3, 5743) VT S(5k+3, 55+1) % T 5(5Kk+3, 5j+4) d’ng
o

s

—

K
kN , |
e T L [r(5k+4,5j+l) U T (skta, 5544) P T S(5ke4, 5541) Y

o

—

+ + + +
®(5kt4,55+2) ¥j T S(5k+4,55+3) Vi T S(sk+a, 55+4) P¢j T S(5k+4, 5545) d’ej]

.+_
d5k+4
-1
{

K
K z + 'L+ u
= s
Tto T(5k+5,55+3) j | T(5k+5,5j+5) Poj | S(5k+5,5i+1)
j=0

ts + +
S(5k45,55+2) Vi T S(5k+5, 5i44) %j T 5(5k+5, 5j45) d’eJ

k = o, 1, 2, - - - - - K-1 (2-19)
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Coefficients are given in Appendix 1,3

Equation 6 can be written in matrix notation as,
y = Rz' +Sz +x (2-20)
Hence, the boundary conditions (37) become
QRz' + (A+9Q8S)z =0 -9x (2-21)

The form of Eq. (2-21) modified if the shcil has a pole (i.e., r = 0)
because the coefficients of the differential equations become singular for this

case, Following a similar limiting process as described by Greenbaum the
conditions supplied at the pole are:

For Fourier index = 0

u =V = = =

0" Y0 = %0 = %0~ %o °

For Fourier index =1

't = = <+ = =
uptovs W= bt 8y o Ty gy T Mg T Meg) "0
For Fourier index = 2
u'l. = v1 = w'L = ¢€i = ¢61 = 0
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2.2 FINITE DIFFERENCE FORMULATION FOR THE MERIDIONAL
VARIATION

In a manner similar to that described in Reference 2 the partial differ-
ential equation in the matrix form (Eq. 2-12) is reduced by a system of finite
difference approximations. The variation in the meridional coordinate of the
Fourier coefficients are described pointwise in Eq. (2-12). The following
are finite difference forms for the partial differentials in the meridional
coordinate at interior points.

2% 1

pe2 -2z T T Eh !

pf 1 |

o s - -
9¢ A(i+l fi-l) 2-23

where A is the increment along § and the subscripts devote the discrete values
of the function taken. The forms at boundary points (initial)

of 1

2 3
terminal

of 1

= - f +4f -3f 2-25
agl ZA( )

N-2 N-1 N

The result of the application of the various finite difference forms can
be stated compactly at the following set of equations:

Aozz-l-Bozl+Co zozgo

_ N ;
At T B2+ Cizy =gt 2z 4Pz

i i+l 1
AN 2N + BN ZN-1 + CN Zno2 T 8N 2-26
Where
A =-Q R
o o o
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Q
I
>
o]
-+
Q]
o
w0
o]
]

g = 1 - a 2-27

The subscript (o) refers to the conditions at the initial boundary. For i # o, N

2 F,
A=t G
-4 F,
B. = +2A(H, +K.)
1 A 1 1
2 F,
C.=——-G
- A i
gi=2Api 2-28

Finally for i = N or conditions at the terminal boundary

3, R

| N N
AN=ANtONSNt =22
. - 29 Ry
N~ A
c oy Ry
N~ 2A
gy = Iy - O 2 2-29

2.3 FINITE DIFFERENCE FORMULATION IN THE TIME VARIABLE

By the use of difference equations the above differential equation in
matrix form may be transformed into a set of algebraic equations involving
the variable z; at successive values of time.
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The most commonly used are the central difference forms; however,
from a numerical stability aspect, the difference forms of Houbolt (Ref 3 and

4) are used, These forms are

2z. -5z, +4 z, -z,
. j j-1 j-2 j=3
7 =
62
11z, - 18 2z, +9 z. -2z,
é: J J-6lé J-Z J—3 2-30

Where the subscript j refers to the time interval j =0, 1, 2, ... and & is the

time increment.

Introducing these expressions in Eq. 2-26 results in the following set
of algebraic equations for the shell response problem,

A =z +BZ +CZ _:g

o 2,j o 1,j o 0,] o
A %k, 3T P %5 T G B, T By
AN zN,j+BN ZN—l,j+CN ZN-Z, j:gN 2-31
where
A = §A.
1 1
B, .= 6B.+4-,éa.+l—l AR,
1,] 1 61 3 1
c’ - sC
1 1
P . A A
Bi,j - B T (10 5%t 6Aﬁi>zi,j-l +( 8% %" 3‘”31)21,3-2
A 2
22 2aB ),
o 5173 Pi>/i, i-3
The

In the real problem no values of z; exists for less than zero.
assumption that z; does exist before t = 0 is a means of allowing the recur-
rence from Eq. (2-31) to apply at the origin as well as later values of time.
Furthermore, no violation is made as long as the initial conditions of t = o

arc satisfied,
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To obtain values for the fictitious terms j = -1, -2 a procedure similar
to that described by Houbolt is used. The procedure will require a modifi-
cation of Bfl“ o gi“ i for j = 1, 2.

The difference equations for the first and second derivatives at the third
increment of four successive increments are given by

. 1
5752, el T 2, 5T, a0
z —1(22 + 3z -6z, . +z ) 2-32
i-,j - 66 i’j 1’j i-vj i) J'Z
Applying the equations att = o, i.e. j= o
" 1
0% 2%, 178,01 % 1)
5. = (2 +3 2 6 z +z ) 2-33
i,o 66 <%, i,0 i,-17 %, j-2

The initial conditions are the displacements and velocities are prescribed.
(at t = 0), By application of Newton's second law, s secondary initial
condition can be established, i.e., acceleration immediately following appli-
cation of the initial forces. These conditions are

Z. =d,

i, o i, o

z, =V,

i, o i, o

z, = a, 2-34
i, o i, o

Where dj, o) V; o» 2; o are column n matrices formed of the respective
i) L] 4 s ’ 3 . . . k3
coefficients of the Fourier expansions on @ of the initial displacements,

velocities, and accelerations at the meridional location i.

Substitution of these values into Eq. (2, 32) yields the following relations

z = d,

i, o i, 0

zZ, = 5)2 a + 2d -Z

i, -1 i, o i, 0 i, 1

z, ,=68%a, +65v. +9d, - 8z, 2-35
i, -2 i,o i,o i, o i, 1
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Substitution of these relations in Eq. (2-31) for j = 1 yields the following
change in the definitions of the arrays in Eq. (2-31)

B, =8B, +12% + 648,
i, 1 1 61 i
sk A 7T 2
g égl + ( 50+ 6Aﬁi i o + 4A6ai 3 Bl PR
+(12Aa, + 4458.) v, 2-36
1 1 1, O

b4

Substitution of definitions Eq. (2-31) for j = 2 yields the following
change in definitions of the arrays for Eq. (2-31)

* A 16 A 5 A 2 2
=6 —a +— o = =
8 2 (gi+(86 it 3ﬁi)zi,l+(46ai3Aﬁi)d. +(26 ai+3Aﬁi)6 a,

1,0 1, 0
2-37

The set of Eq. (2-31) and the additional definitions at the first two time inter-
vals is now the algebraic statement of the dynamic response problem.

2.4 MATRIX SOLUTION OF THE DIFFERENCE EQUATIONS

The set of matrix equations (Eq. 2-31) will be solved by the same pro-
cedure described in Ref. 2. This procedure is essentially a Gaussian elimi-
nation performed on the partitioned arrays. A slight modification of the
elimination procedure described in Ref. (3) is used here. Considering the
first and second equations of Eq. (2-31) at the jth time interval

Az . +B =z, ,+C z . =g

o 2,] o 1,] o 0,] o

Az . +BYz +C. 2%  =g¥. 2-38

Eliminating Z . from the equations and solving for z,
o

s ) 1,]
-1
--|B -c c. '8 A -cctalz
1, T TP T Mo 1,3 o To 71 1 2,j
l als -l 1 als
- - - B 2-3
+ [BO COC1 Bl,j:l [go CoCl gi,j:l 9
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which becomes the form of Ref. (2)

zl,jz_Pi,jZZ,j+xi,j 2-40
where
P —-B-CC_IB 7-I—A cc'lAj
1,j o o1 1, "o o1 1_]
i 1 % 7T 1
= - R - B 2-41
*1,3 _Bo A Bl,j_ 8o A gl,j]

Retaining the form of Eq. (2-40) for all meridional locations the general
results become

z, ,=-P, .z L x,
i,j i,j i+ 1,j 1,)

(i=12,3... N-1) 2-42
Analogous to Ref, (2) forms of P and x are

- q -1

P .=|B ,-C P, _. .
i,] BEIR i l-l,JJ i

- 4 -1
sk sk
5T _Bi.j "GPl [gi.j -G xi-l,j:]

-

(i=2, 3, 4, ... N-1) 2-43

Substituting the recursive relation Eq. (2-42) into the last of Eq. (2-31) yields

- -1
£
2,5 = | ANt N Prez,y - By, PN-1,j]

-

%

BN, ;" CN*N-2,j T CnFPn-2,j " BN, j xN-l,j] 2-44
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Having ZN the solutions at previous stations, ZN-1,j* ZN- 2,j etc,, can be
found by using the recursive relation Eq. (2-42). Fmally Zo, j calculated
from the second equation of Eq. (2-31) and is given by

-1 b R
Zo,j—cl [gi,j -Al zZ,j_Bl,j Zl,j:l 2-45

The elimination procedure described as for the general time interval j,
In the procedure for solution of the dynamic response begmnmg atj =1and
using the initial conditions to define the arrays Bu 1 and gi 1 Eq. (2-36)
the solution zj j is obtained by the above outlined procedure For the time
interval j = 2 the definitions of Eq. (2-37) are used to derive a closed set on
Zi, 2- Successive solutions for zi, j are obtained from the general forms

which use the previous solutions zj j_], zj, j.2 to give an algebraic set for the

unknown z,
1,
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PRECEDING PAGE BLANK,NOT,HLMED.

3.0 NUMERICAL COMPARISONS

3.1 INTRODUCTION

The preceding analysis was mechanized for a digital computer. The
analysis was specialized in order to conform to failure limitations. The fol-
lowing limitations were made:

1. Single region shells

2. Isotropic stiffness relations

3. Reference surface must be the middle surfacei.e. S E{d{ = 0.

4, Thermal variations circumferentially are such that limitation(s)
is not distributed significantly.

The computer programs with these limitations were used to study
several problems.

3.2 CASE 1
A comparison was made on the ATR209 Block 1 test. This problem was
studied because test data and several other numerical solutions were avail~

able. The ATR209 configuration was an axisymetric spherical cap under an
unsymmetric loading. The problem is defined below.

13.8

Pinned

Figure 3-1. ATR 209 Geometry
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The results of NAA unsymmetrical program are compared with several
other investigators using other numerical techniques and the test results in

Figure 3.2.

(0] NAA TEST
—— = — NAA FINITE DIFFERENCE, REF.

......... STEBBINS REF, 7

- = -~ — BELL REF. 8
NAA UNSYMMETRIC

ATR 209 Test Normal Displacement Comparison

Figure 3-2,
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3.3 CASE 2

A second problem was considered to study the properties of the solu-
tion for an unsymmetric shell. This problem was a clamped unsymmetrical
cap under uniform pressure with a stiffer region on one side., See figure
below.

GEOMETRY
R =90 S*-141.4

REFERENCE LEVELS

Eo =1

ho = 1

/ \\ Op = 1
/ STIFFER REGION a- 141.4

/ [t v=10.3

i \ LOADING
q = 200 PS!
| % UNIFORM

/L PRESSURE
0

BOUNDARY CONDITIONS
CLAMPED

Figure 3-3. Step Hemisphere Geometry

For this problem, the Fourier series approximatly the discontinuous
stiffness distribution was truncated after 10 terms. For a uniform pressure
loading, individual Fourier coefficient solutions (wp) for normal deflection
are given in Figure 3-5 as a function of the meridional coordinate. It can be
seen that the general character of the displacement pattern reflects the
Fourier stiffness distribution profile. A convergence trend is exhibited
because the higher order harmonics of the solution diminish in magnitude.
The total deflection obtained by summing the Fourier contributions is plotted
along the plane of symmetry (6 = 0-180 deg) in Figure 3-6. Also shown are
the deflections obtained for axisymmetric shells with uniform stiffness distri-
butions corresponding to the magnitude of the stiff and weak sides. As
expected, these results bracket the solution for the variable-rigidity shell.
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COMPONENTS OF B1o x 1077

Figure 3-4.

Fourier Components of the Membrane Stiffness Distribution
for the Hemispherical Shell Problem

MAGNITUDE OF THE FOURIER COMPONENTS, Wp (X103)

Figure 3-5, Fourier Component Distribution of Normal Displacement
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NORMAL DISPLACEMENT
W IN INCHES

A
WEAK SIDE o - 10n°

\VARIABLE

0.10 + RIGIDITY

SOLUTION
STIFF SIDE/ 0.05-
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i —

1 0.5 0 0.5
MERIDIONAL COORDINATE (£)

1

—

Figure 3-6. Meridional Distribution
of Total Normal Displacement

The same problem was a run with only three and five terms retained in
the stiffness .series expansions. Variation in the third harmonic of deflection
(wp) along the meridian is plotted in Figure 3-7 for the cases where K is set
equal to 3, 5, and 10. The higher harmonic coupling effects appear to
diminish as more terms are retained in the solution (i.e., as K increases),

For economic purposes, the number of inte.ration points used in
obtaining the above numerical results was N = 26 for Case II. The basic
character of the solutions is illustrated for these relatively coarse grids.

Additional studies have shown increased accuracy when a finer finite dif-
ference mesh is taken.
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MAGNITUDE OF FOURIER COMPONENT, W2 (X 104)

MERIDIONAL COGRDINATE (&)
0 0.5 1.

Figure 3-7. Meridional Distribution
of Third Fourier Component of
Solution for K =3, 5, and 10
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3.4 CASE 3.

The third problem studied was the Apollo test shield under a static pad
load similar to the input load distribution.

The geometry is given below.

QL

L\

100psi
Figure 3-8. Apollo Test Shield Geometry

A comparison with several other techniques is given in the following
Figure 3-9.

L 0.4

1w

BELL REF, 7 -
‘ NAA UNSYM. —

NAA FINITE DIFF., . - —~
Figure 3-9. Normal Displacement Along the Plane of Symmetry
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3.5 CASE 4

The fourth problem considered was a simply supported cylinder sub-

jected to a uniform semisinuoidal pulse. The configuration and loading is
given below.

fe— 184.4" ——uy

3705.{‘“ — 1000.

A —A
Pinned

\ — Time
.003113
0.4054"

Figure 3-10. Cylinder Geometry and Loading

Several solutions were obtained using very crude spacial and time

grids. A comparison is made to other analytic and numerical solutions in the
following Figure 3-11,

/ SHENG'S SOLUTION REF, 9

NAA SYMMETRIC ’ N
SHELL DYNAMICS ’ \
40 ST

NAA UNSYMMETRIC
SHELL DYNAMICS
6ST

NAA UNSYMMETRIC SHELL DYNAMICS 3 ST

3x 1073

A g

1 x 1073 2 X 10°3 TIME

Figure 3-11. Dynamic Response of Cylinder
to a Uniform Semi-Sinsoidal Pulse
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1.1 APPENDIX

Modification of Sander's Equations

Virtual change in the strain energy within C

(1)
€12 7 €21 2)
1 1 @Y 1 1Y
2 N @19, &1 M2 2 ,
Substituting (2) — (1)
LM ek, + 4 M. 6k 1 5 1
2 Migokia +5 Mook +5 Mp 8k + 5 Mpp8kyy +
(4)
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5 218K g T Mk H o Mgtk T Mgty Y

M?_Zék22 + Qlo\{l + Qzéyz Qlazdéldéz

Rearrange
= [[INn&en +(Np, + Ny ) Beqy + Npysbeyy + My ok )+

1 1
I - . 5
Z(ML2 M, ) 8 (kyp - kyp) E(MIZ+1\/1?_1)esk21+ (5)

1
7 (M2 + My)) Bk, + Magdkoa + Q16V) + Qp0vz | y0pdgyde,
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Substitute 3 — 5.
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i () g 2
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APPENDIX 1.2

Multiplication of Series Expansions

The relationships AN and AP used in the text are found by multi-
plying term by term the series expansions of stiffness and strain and noting
a recurring sequence of the resulting expressions

K- K-1 K-1 /K- i
e. g. b.cos.8 z ¢, cosnB) = Z AN e .] cosn®é
] En . §J
J=0 n=o n=o J=o
K-1 | K ‘
j 2
- —;—[b(n+3)+{1-6(j-k)
n=o | j=o

+6(k)}b|n-jljle§j cosn®

K-1 K-1 -1 /K-1 .
zb,cos_e z € sinnB | = 2 AnJ" . ) sinneg
: J J n

€
j=0 n=l & n=11\ j=o 6]
K-1 | K-1 .
- %[ p{H) [1 - 62(j-K)
n=1 | j=o

where
-1 mco
§(m) = o m=o
+1 m>o
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